On the Number of Bound States for Schrödinger Operators with Operator-valued Potentials

نویسنده

  • DIRK HUNDERTMARK
چکیده

Cwikel’s bound is extended to an operator-valued setting. One application of this result is a semi-classical bound for the number of negative bound states for Schrödinger operators with operator-valued potentials. We recover Cwikel’s bound for the Lieb–Thirring constant L0,3 which is far worse than the best available by Lieb (for scalar potentials). However, it leads to a uniform bound (in the dimension d ≥ 3) for the quotient L0,d/L cl 0,d, where L cl 0,d is the so-called classical constant. This gives some improvement in large dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number of Bound States of Schrödinger Operators with Matrix-valued Potentials

We consider the Schrödinger operator −∆ − V (x) on R, but with the difference from the usual case that V is a Hermitian matrix-valued potential. In other words, the Hilbert space is not L(R) but L(R;C). The values of functions in this space, ψ(x), are N−dimensional vectors. (What we say here easily generalizes to ‘operatorvalued’ potentials, i.e., C is replaced by a Hilbert space such as L(R), ...

متن کامل

Arithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making

The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...

متن کامل

A Sharp Bound on Eigenvalues of Schrödinger Operators on the Halfline with Complex-valued Potentials

We derive a sharp bound on the location of non-positive eigenvalues of Schrödinger operators on the halfline with complex-valued potentials.

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

The Resonance Counting Function for Schrödinger Operators with Generic Potentials

We show that the resonance counting function for a Schrödinger operator has maximal order of growth for generic sets of real-valued, or complex-valued, L∞-compactly supported potentials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000